Systematic Review on CAR-T Cell Clinical Trials Up to 2022:
Academic Center Input
Simple Summary: The development of CAR-T cell clinical trials has accelerated over the last two
decades. These trials, collected on Clinicaltrial.gov until 2022, come mainly from the United States
(n = 377) and China (n = 636), while Europe (n = 58) remains far behind these two leading countries.
The aim of our analysis of clinical trials was to provide an overview of the characteristics of these
trials, such as conditions, targets, phase status, and especially, pointing out the nature of the academic
or industrial investigator. We have highlighted that poorly developed academic and industrial
collaborations in Europe could be one explanation of the delay of Europe to bring a CAR-T cell
product to market, compared to the leading countries. Moreover, regulatory and financial differences
also come into play. A valorization of the development of these advanced therapy medicinal products
as well as the provision of financial support would accelerate the process in Europe.
Abstract
Abstract: The development of Chimeric Antigen Receptor T cells therapy initiated by the United
States and China is still currently led by these two countries with a high number of clinical trials,
with Europe lagging in launching its first trials. In this systematic review, we wanted to establish
an overview of the production of CAR-T cells in clinical trials around the world, and to understand
the causes of this delay in Europe. We particularly focused on the academic centers that are at the
heart of research and development of this therapy. We counted 1087 CAR-T cells clinical trials on
ClinicalTrials.gov (Research registry ID: reviewregistry1542) on the date of 25 January 2023. We
performed a global analysis, before analyzing the 58 European trials, 34 of which sponsored by
academic centers. Collaboration between an academic and an industrial player seems to be necessary
for the successful development and application for marketing authorization of a CAR-T cell, and
this collaboration is still cruelly lacking in European trials, unlike in the leading countries. Europe,
still far behind the two leading countries, is trying to establish measures to lighten the regulations
surrounding ATMPs and to encourage, through the addition of fundings, clinical trials involving
these treatments.
Keywords: clinical trial; Chimeric Antigen Receptor T cell; academic center; regulation
article original link: click here
References
- Dotti, G.; Gottschalk, S.; Savoldo, B.; Brenner, M.K. Design and Development of Therapies using Chimeric Antigen Receptor-
Expressing T cells. Immunol. Rev. 2014, 257, 107–126. [CrossRef]
- Gross, G.;Waks, T.; Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with
antibody-type specificity. Proc. Natl. Acad. Sci. USA 1989, 86, 10024–10028. [CrossRef]
- Milone, M.C.; Fish, J.D.; Carpenito, C.; Carroll, R.G.; Binder, G.K.; Teachey, D.; Samanta, M.; Lakhal, M.; Gloss, B.; Danet-
Desnoyers, G.; et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and
increased antileukemic efficacy in vivo. Mol. Ther. 2009, 17, 1453–1464. [CrossRef]
- Haynes, N.M.; Trapani, J.A.; Teng,M.W.L.; Jackson, J.T.; Cerruti, L.; Jane, S.M.; Kershaw,M.H.; Smyth,M.J.; Darcy, P.K. Single-chain
antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 2002, 100, 3155–3163.
[CrossRef]
- Chmielewski, M.; Abken, H. TRUCKs: The fourth generation of CARs. Expert Opin. Biol. Ther. 2015, 15, 1145–1154. [CrossRef]
[PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer,M.; Bittencourt, H.; Bader, P.; Verneris,M.R.; Stefanski, H.E.;Myers, G.D.; et al.
Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J.Med. 2018, 378, 439–448. [CrossRef]
[PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.;Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin,
Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J.Med. 2017, 377, 2531–2544.
[CrossRef] [PubMed]
- Shah, N.N.; Fry, T.J. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019, 16, 372–385. [CrossRef]
- Locke, F.L.; Neelapu, S.S.; Bartlett, N.L.; Siddiqi, T.; Chavez, J.C.; Hosing, C.M.; Ghobadi, A.; Budde, L.E.; Bot, A.; Rossi,
J.M.; et al. Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive
Lymphoma. Mol. Ther. 2017, 25, 285–295. [CrossRef] [PubMed]
- Kuwana, Y.; Asakura, Y.; Utsunomiya, N.; Nakanishi, M.; Arata, Y.; Itoh, S.; Nagase, F.; Kurosawa, Y. Expression of chimeric
receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem. Biophys. Res. Commun.
1987, 149, 960–968. [CrossRef]
- Levine, B.L.; Miskin, J.; Wonnacott, K.; Keir, C. Global Manufacturing of CAR T Cell Therapy. Mol. Ther. Methods Clin. Dev.
2017, 4, 92–101. [CrossRef]
- Iyer, R.K.; Bowles, P.A.; Kim, H.; Dulgar-Tulloch, A. Industrializing Autologous Adoptive Immunotherapies: Manufacturing
Advances and Challenges. Front. Med. 2018, 5, 150. [CrossRef] [PubMed]
- Yakoub-Agha, I.; Ferrand, C.; Chalandon, Y.; Ballot, C.; Castilla Llorente, C.; Deschamps, M.; Gauthier, J.; Labalette, M.; Larghero,
J.; Maheux, C.; et al. Prérequis nécessaires pour la mise en place de protocoles de recherche clinique évaluant des thérapies
cellulaires et géniques par lymphocytes T dotés de récepteur chimérique à l’antigène (CAR T-cells): Recommandations de la
Société francophone de greffe de moelle et de thérapie cellulaire (SFGM-TC). Bull. Cancer 2017, 104, S43–S58.
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef]
- Hartmann, J.; Schüßler-Lenz, M.; Bondanza, A.; Buchholz, C.J. Clinical development of CAR T cells—Challenges and opportunities
in translating innovative treatment concepts. EMBO Mol. Med. 2017, 9, 1183–1197. [CrossRef] [PubMed]
Cancers 2023, 15, 1003 17 of 18
- Xu, Y.; Zhang, M.; Ramos, C.A.; Durett, A.; Liu, E.; Dakhova, O.; Liu, H.; Creighton, C.J.; Gee, A.P.; Heslop, H.E.; et al. Closely
related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood
2014, 123, 3750–3759. [CrossRef] [PubMed]
- Blache, U.; Popp, G.; Dünkel, A.; Koehl, U.; Fricke, S. Potential solutions for manufacture of CAR T cells in cancer immunotherapy.
Nat. Commun. 2022, 13, 5225. [CrossRef]
- Abou-El-Enein, M.; Elsallab, M.; Feldman, S.A.; Fesnak, A.D.; Heslop, H.E.; Marks, P.; Till, B.G.; Bauer, G.; Savoldo, B. Scalable
Manufacturing of CAR T cells for Cancer Immunotherapy. Blood Cancer Discov. 2021, 2, 408–422. [CrossRef]
- Mock, U.; Nickolay, L.; Philip, B.; Cheung, G.W.K.; Zhan, H.; Johnston, I.C.D.; Kaiser, A.D.; Peggs, K.; Pule, M.; Thrasher,
A.J.; et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy.
Cytotherapy 2016, 18, 1002–1011. [CrossRef]
- Vucinic, V.; Quaiser, A.; Lückemeier, P.; Fricke, S.; Platzbecker, U.; Koehl, U. Production and Application of CAR T Cells: Current
and Future Role of Europe. Front. Med. 2021, 8, 713401. [CrossRef]
- Hort, S.; Herbst, L.; Bäckel, N.; Erkens, F.; Niessing, B.; Frye, M.; König, N.; Papantoniou, I.; Hudecek, M.; Jacobs, J.J.L.; et al.
Toward Rapid,Widely Available Autologous CAR-T Cell Therapy—Artificial Intelligence and Automation Enabling the Smart
Manufacturing Hospital. Front. Med. 2022, 9, 913–987.
- Castella, M.; Boronat, A.; Martín-Ibáñez, R.; Rodríguez, V.; Suñé, G.; Caballero, M.; Marzal, B.; Pérez-Amill, L.; Martín-Antonio,
B.; Castaño, J.; et al. Development of a Novel Anti-CD19 Chimeric Antigen Receptor: A Paradigm for an Affordable CAR T Cell
Production at Academic Institutions. Mol. Ther. Methods Clin. Dev. 2019, 12, 134–144. [CrossRef] [PubMed]
- Jacoby, E.; Bielorai, B.; Avigdor, A.; Itzhaki, O.; Hutt, D.; Nussboim, V.; Meir, A.; Kubi, A.; Levy, M.; Zikich, D.; et al. Locally
produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic
leukemia. Am. J. Hematol. 2018, 93, 1485–1492. [CrossRef]
- Itzhaki, O.; Jacoby, E.; Nissani, A.; Levi, M.; Nagler, A.; Kubi, A.; Brezinger, K.; Brayer, H.; Zeltzer, L.A.; Rozenbaum, M.; et al.
Head-to-head comparison of in-house produced CD19 CAR-T cell in ALL and NHL patients. J. Immunother Cancer 2020, 8, e000148.
[CrossRef]
- Ortíz-Maldonado, V.; Rives, S.; Castellà, M.; Alonso-Saladrigues, A.; Benítez-Ribas, D.; Caballero-Baños, M.; Baumann, T.;
Cid, J.; Garcia-Rey, E.; Llanos, C.; et al. CART19-BE-01: A Multicenter Trial of ARI-0001 Cell Therapy in Patients with CD19+
Relapsed/Refractory Malignancies. Mol. Ther. 2021, 29, 636–644. [CrossRef]
- Ran, T.; Eichmüller, S.B.; Schmidt, P.; Schlander, M. Cost of decentralized CAR T-cell production in an academic nonprofit setting.
Int. J. Cancer 2020, 147, 3438–3445. [CrossRef]
- Iglesias-Lopez, C.; Obach, M.; Vallano, A.; Agustí, A. Comparison of regulatory pathways for the approval of advanced therapies
in the European Union and the United States. Cytotherapy 2021, 23, 261–274. [CrossRef] [PubMed]
- Yin, C.; Gao, J.; Li, G.; Hu, H.; Zhou, L.; Lu, S.; Chen, X. Gene and cell therapies in China: Booming landscape under dual-track
regulation. J. Hematol. Oncol. 2022, 15, 139. [CrossRef] [PubMed]
- Pizevska, M.; Kaeda, J.; Fritsche, E.; Elazaly, H.; Reinke, P.; Amini, L. Advanced Therapy Medicinal Products’ Translation in
Europe: A Developers’ Perspective. Front. Med. 2022, 9, 757647. [CrossRef]
- How China Is Making Progress in Cell and Gene Therapy EY—Global. Available online: https://www.ey.com/en_gl/lifesciences/
how-china-is-making-progress-in-cell-and-gene-therapy (accessed on 10 December 2022).
- Braendstrup, P.; Levine, B.L.; Ruella, M. The long road to the first FDA-approved gene therapy: Chimeric antigen receptor T cells
targeting CD19. Cytotherapy 2020, 22, 57–69. [CrossRef] [PubMed]
- Prommersberger, S.; Reiser, M.; Beckmann, J.; Danhof, S.; Amberger, M.; Quade-Lyssy, P.; Einsele, H.; Hudecek, M.; Bonig, H.;
Ivics, Z. CARAMBA: A first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene
transfer to treat multiple myeloma. Gene Ther. 2021, 28, 560–571. [CrossRef]
- SLAMF7-CAR T Cell Treatment of Multiple Myeloma Patients. Available online: https://www.caramba-cart.eu/ (accessed on
10 December 2022).
- Singh, H.; Moyes, J.S.E.; Huls, M.H.; Cooper, L.J.N. Manufacture of T cells using the Sleeping Beauty system to enforce expression
of a CD19-specific chimeric antigen receptor. Cancer Gene Ther. 2015, 22, 95–100. [CrossRef] [PubMed]
- Magnani, C.F.; Tettamanti, S.; Alberti, G.; Pisani, I.; Biondi, A.; Serafini, M.; Gaipa, G. Transposon-Based CAR T Cells in Acute
Leukemias: Where areWe Going? Cells 2020, 9, 1337. [CrossRef]
- Gee, A.P. GMP CAR-T cell production. Best Pract. Res. Clin. Haematol. 2018, 31, 126–134. [CrossRef] [PubMed]
- Deschamps,M.; Decot, V.; Giverne, C.; Pinturaud,M.; Vaissié, A.; Parquet, N.; Olivero, S.; Anne-Claire,M.; Bay, J.O.; Yakoub-Agha,
I.; et al. Prérequis pour une production académique des cellules CART conforme aux bonnes pratiques pharmaceutiques (BPF).
Recommandations de la Société francophone de greffe de moelle et de thérapie cellulaire (SFGM-TC). Bull. Cancer 2020, 107, S85–S93.
[CrossRef]
- Bonifant, C.L.; Jackson, H.J.; Brentjens, R.J.; Curran, K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics
2016, 3, 16011. [CrossRef]
- AdvaBio. Available online: https://www.advabio.com/ (accessed on 10 December 2022).
- Wang, L.; Gong, W.; Wang, S.; Neuber, B.; Sellner, L.; Schubert, M.L.; Hückelhoven-Krauss, A.; Kunz, A.; Gern, U.; Michels,
B.; et al. Improvement of in vitro potency assays by a resting step for clinical-grade chimeric antigen receptor engineered T cells.
Cytotherapy 2019, 21, 566–578. [CrossRef] [PubMed]
Cancers 2023, 15, 1003 18 of 18
- Costariol, E.; Rotondi, M.C.; Amini, A.; Hewitt, C.J.; Nienow, A.W.; Heathman, T.R.J.; Rafiq, Q.A. Demonstrating the Manufacture
of Human CAR-T Cells in an Automated Stirred-Tank Bioreactor. Biotechnol. J. 2020, 15, e2000177. [CrossRef]
- Mizukami, A.; Swiech, K. Platforms for Clinical-Grade CAR-T Cell Expansion. Methods Mol. Biol. 2020, 2086, 139–150.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.
